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This paper presents a “hybrid” method of numerical simulation of collisionless
plasmas in which weighted particles are advanced as in particle simulations, but in
which the distribution function is reconstructed periodically by a local averaging
operation as in numerical solutions of the Vlasov equation. The rates of diffusion
resulting from repeated averaging of the distribution function are estimated. These
rates indicate that it is possible to minimize the effects of both beaming instabilities
and diffusion by properly choosing the frequency of reconstruction of the distribution
function. A computer code was written to implement this method and numerical solu-
tions of two-stream instability problems are presented.

1. INTRODUCTION

Computational studies of the dynamic behavior of plasmas have generally been
carried out either by using particle simulation methods or by solving the Vlasov
equation numerically. The purpose of this paper is to present “hybrid” solutions
in which weighted particles are advanced as in particle simulations, but in which
the distribution function is reconstructed periodically as in Vlasov solutions by a
local averaging operation in phase space. The problems considered are one-
dimensional with periodic boundary conditions, and involve only electrons
moving over a uniform, positively charged background.

In particle simulation of plasmas, the positions and velocities of a large number
of particles moving in their self-consistent (and any externally imposed) fields are
computed as a function of time [1-5]. Thus the complete dynamical state of the
system is known at every time step, and average quantities of interest, such as
number densities or temperatures, are computed whenever desired. The initial
positions and velocities of the particles may be chosen either randomly or in
ordered manner to simulate the actual initial conditions of the plasma. In a random
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initialization, the initial positions of the particles are chosen to represent the
initial density and their initial velocities are chosen at random with probabilities
corresponding to the initial velocity distribution. This initialization procedure is
simple and conceptually close to actual physical conditions. However, since the
number of simulation particles is necessarily much smaller than the number of
particles found in actual plasmas, the fluctuations appearing in the averaged
quantities, such as the electric field, mean velocity or thermal velocity, are much
larger in the simulation plasma than in the actual plasma. These fluctuations may
be reduced by increasing the number of simulation particles, but they drop only
as N~1/2, where N is the number of simulation particles. The number N is, of course,
limited by the computer capacity.

When all the simulation particles representing a given specie are identical, many
particles are needed to represent the larger values of the distribution function
while proportionally few particles are available to represent the smaller values.
The discrete nature of the simulation plasma is therefore particularly evident in
regions of the phase plane where the density in phase is small, such as in regions
corresponding to the tails of the distribution function. Particle simulation methods
using weighted particles, all having the same charge over mass ratio, but with
varying charges and masses, have been used to improve the representation of the
plasma in regions of low density in phase [5]. These methods are useful to study
resonant interactions between waves and a relatively small number of particles,
such as occurs in Landau damping. To initialize the computations in this case, the
phase plane may be covered with a grid having mesh sizes Ax and 4dv. A weighted
particle is then located at each grid point, with a charge and mass proportional to
the local value of the initial phase density. This initialization technique, which does
not introduce any random fluctuations in the simulation plasma, is an example of a
quiet start. We observe, however, that the particles now form a set of discrete small
beams, which are subject to instabilities having growth rates proportional to k4o,
where k is the wave number [6]. Thus, while the simulation plasma is initially
quiet, it may be affected by growing spurious oscillations.

An alternate approach to the computational study of collisionless plasmas is
provided by numerical solutions of the Vlasov equation [7-12]. Let L denote the
periodicity length of the plasma and w, the plasma frequency. Distances will be
measured in units of L and times will be measured in units of w,". It follows that
the electric field is measured in units of mLw,2/e where e and m are the electron
charge and mass. The one-dimensional Vlasov equation then takes the form

(ef [ot) + v(&f [ox) — E(ef [ov) = O, M

where f (x, v, t) denotes the electron distribution function and E(x, ¢) is the electric
field. Let E(x, t) = E®%(x, t) + E™(x, f), where E®** is an external electric field
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and Eit js the internal field due to electrons and the positively charged background.
The internal field is determined by Poisson’s equation

o Eint +
il el N fdv. (2)

The solutions of the Vlasov equation obey the principle of conservation of
density in phase. The density in phase is the distribution function itself in the
present case. Let (x, , v,) denote the coordinates of a particle in the phase plane
at time ¢, . At time ¢, the particle has moved to the phase point (x, v). Conservation
of density in phase requires f(x, v, t) = f(Xo, v, to).

An important property of the solutions of the Vlasov equation is their tendency
to acquire increasingly fine structures in phase plane as time increases. This
phenomenon may be illustrated in terms of the oscillations of an electron gas
trapped in the potential trough of an external electric field of the form

>
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Fic. 1. Example of the development of fine structures in the solutions of the Vlasov equation.
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E = E, sin 2mx/L. Neglecting the internal field which would not change the results
qualitatively, the electron trajectories are given by Jacobi elliptic functions,

sin(mx/L) = « sn(u, k),
vfvrr = K cn(u, k),

with u = 2mt/Trx -+ u, . Here 775 denotes the trapping period and vy, the trapping
velocity. The modulus « and the constant u, depend on the initial electron coor-
dinates in the phase plane. The limit cycle defining the boundary between trapped
and untrapped electrons in the phase plane is shown in Fig. 1. If the electrons are
initially distributed uniformly over the shaded area shown in Fig. 1(a), their phase
density at ¢ = 27,5 will be uniformly distributed over the shaded area shown in
Fig. 1(b). In the present case, the development of the fine spiral structure near the
limit cycle is caused by the sharp amplitude dependence of the period of oscillations
of trapped electrons in this region. As time increases, the description of the distribu-
tion function requires an ever finer resolution which ultimately exceeds the finite
capacity of computer storage.

This phenomenon has been discussed by Lynden-Bell [13] in relation to the
approach to equilibrium of solutions of the Vlasov equation. When the structure
becomes so fine that its scale is much smaller than the characteristic lengths and
velocities of the plasma phenomena of interest, its description may be abandoned
and a coarse-grained distribution function f(x, v, t) defined by averaging f(x, v, ),

fix, v, t) = fl J‘M W XY w, () fix + x", v + v, t) dx’ dv'. 3)

The weight functions w,(x) and w,(v) define the resolution and the exact form of the
averaging operation. The choice of these functions is an important consideration
in numerical solutions of the Vlasov equation.

By reversing the sign of ¢ in Eq. (1) it may be observed that solutions of the
Vlasov equation are reversible. However, the averaging operation defined by (3)
amounts to neglecting some of the information contained in the fine structure of
f(x, v, ). Thus numerical solutions of the Vlasov equation using this averaging
operation are not exactly reversible. Since the computation of the coarse-grained
distribution function also involves the averaging of different neighboring values
of the original distribution function, the principle of conservation of density in
phase no longer applies exactly to the coarse-grained distribution function.

2. ALGORITHM

The hybrid solution algorithm is presented by first considering a numerical
solution of the Vlasov equation. According to the principle of conservation of
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Fic. 2. Characteristics of Vlasov equation in phase plane.

density in phase, an exact solution of the Vlasov equation may be written formally
as

flx 4 8x, v+ 8v,t + At) = f(x, v, 1) 4

in which 8x and 8v are the position and velocity increments during the time interval
At of a particle located at (x, v) at time £. The phase plane is covered with a rectan-
gular grid with mesh sizes 4x and 4dv as shown in Fig. 2. The grid extends from
—Umax t0 —-Umax and the value of vmax is chosen large enough so that the grid
covers all significant portions of the phase plane.

The position and velocity increments are computed by considering sample
particles of masses f(x;, v, , t) located at the grid points (x;, v;), and computing
their position and velocity increments 8x;;, and 8v;, during the time interval 4¢.
The sample particle locations in the phase plane at ¢ +- 4¢ no longer correspond
to grid points and the distribution function must be reconstructed at that time by
distributing the mass of each sample particle among the neighboring grid points,

O o, t 4 Aty =Y, flxy + 8xp, vy + S0y, £ + A1)
ik
X Wel(Xyr — X5 — 8X5) Wolty — Ovz). (5)
Applying this operation to the solution of Vlasov’s equation (4) yields

fxi vop, t + 48 = Y f(x;, 03, 1)
ik

X WXy — x; — 3xp) WV — v — 00, )]
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The weight functions w,, and w, determine what fraction of the mass of a sample
particle is assigned to each neighboring grid point. The discrete sum in Eq. (5)
defines an averaging operation similar to Eq. (3). In the present method the
averaging operation must be carried out by a discrete sum instead of an integral
since the phase plane itself has been discretized by the introduction of a grid. Weight
functions for which the averaging operation conserves any finite number of
moments are derived in Section 3. It is not possible, however, to derive functions
w, and w, for which all moments of the distribution function are conserved, as is
done in the Fourier-Fourier transform method {11, 18]. This results in some
diffusion of the distribution function in the phase plane with rates which are
estimated in Section 3.

The evaluation of the position and velocity increments 8x;; and v, of the
sample particles is presented in Appendix A. The method uses an area weighting
scheme and is based on a Lagrangian formulation of particle dynamics in which
energy is conserved [19].

In a number of problems of physical interest, the initial distribution function
consists of several relatively cold beams and only a fraction of the phase plane is
occupied by particles. As the solution proceeds in time, the principle of conserva-
tion of density in phase (which is still approximately satisfied by the numerical
solution) requires that this fraction must remain constant. Where no particles are
present, the distribution function is zero and does not need to be advanced. This
is achieved in the code by setting a threshold value (for example 10~° times the
maximum value of the distribution function) below which no sample particle is
considered. The electric potential is computed by Fourier transforms so that the
electron density is automatically renormalized at each time step. Thus, the slight
loss of particles resulting from a finite threshold does not result in the build up of a
net charge in the plasma. This feature of the direct method of integration of the
Vlasov equation, which has no counterpart in transform methods, may yield a
considerable saving of computing time when multidimensional problems are
considered.

It is not necessary to reconstruct the distribution function by the averaging
operation (6) for every time step at which the electric field is computed. If At is
the time step used to advance the sample particles, the electric field needs to be
computed after each At increment, but the distribution function can be recon-
structed only every Ndt, where N is a properly chosen integer. In addition to saving
computing time, this procedure reduces the diffusion in phase plane caused by
application of the averaging operation.

The Vlasov solution described above in which the distribution function is
reconstructed only every N-th time step begins to resemble particle simulations and
it seems appropriate to call it a “hybrid” solution. As noted in the introduction,
particle simulations in which weighted particles are loaded on an (x, v) grid to
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represent the initial distribution function have been used [5]. In particle simulation,
however, the distribution function is never reconstructed (N = o) and the simula-
tion plasma is subject to beaming instabilities. An evaluation of the amplitudes
and growth rates of these instabilities, based on Dawson’s theory [6], is presented
in Section 5. This evaluation shows that beaming instabilities have particularly
strong effects on particle simulations after a time 27/kmaxdv, where kmax is the
maximum wavenumber retained in the solution. By reconstructing the distribution
function at time intervals which are short compared to 27/kmaxdv, the simulation
plasma is forced to behave as a continuum and no beaming instabilities can develop.

Examples of numerical solutions involving two-stream instabilities are presented
in Section 4. These examples confirm that it is possible to minimize the effects of
both beaming instabilities and diffusion by properly choosing the frequency of
reconstruction of the distribution function.

3. WEIGHT FUNCTIONS
To derive weight functions w.(x) and w,(v) for which the averaging operation

defined by Eq. (5) conserves a finite number of moments it is sufficient to consider
the one-dimensional operation

f(vi') = Zf v; 4 6v;) w(vy — v; — Svy). )

The weight functions thus found will be applicable to either coordinate or velocity.
Such weight functions, conserving zeroth, first and second order moments have
been derived by K-W Li [8].

a. Moment Conservation Conditions

The moment of order n before averaging is

@y =Y (v; + 8v)" f(v; + vy). ®
j
After averaging the same moment becomes
@ = 3 0 fwp). ©)

Substituting (7) into (9) and reversing the order of the sums over j and j’ yields

G = Zf (v; + dvy) Z vpw(vy — v; — 8vy).

581/9/1-6
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The moments (8) and (9) are therefore equal if the equality

2 vpw(oy — v; — 8vp) = (v; + dvy)" (10)
p

hoids for all values of v; + dv; .

b. Derivation of Weight Functions

Let k = j' — j, since the variable v is represented on a grid with mesh size dv we
have vy = (j -+ k) 4o, vy — v; = kdv and v; = j4v. The moment condition (10)
becomes

Z, ( + k) witk — p) dv] = (j + p), an

where p = Sv;/dv. We may assume without loss of generality that 8v; is positive and
smaller than the mesh size 4v so that 0 <{ p < 1. The function w(v) is now assumed
to be even and to extend over Q meshes dv on either side of the origin. The condi-
tion (11) is satisfied if

Q
S kvw[(k — p) 4v] = pr (12)

k Q
form = 0, 1,..., n. All moments up to order n will then be conserved.

We first assume that # is odd and set Q = (r +- 1)/2. Consider the Lagrangian
interpolation with n + 1 points of the function p™. Since m < n, the interpolation
is exact and we have [20]

Q
Y kA (p) = p, (13)
=1—

k Q

in which the functions A" (p) for 1 — QO <k < Q and 0 < p <1 are the
Lagrangian coefficients with »n +- 1 points. Comparing (12) and (13) yields the
desired weight function,

witk — p) dv] = A™(p),

or

w(v) = A,(C"“) (k — AUU ) for k —Dov<v<kdv (14)

withk = (1 — n)/2,..., (1 + n)/2. For neven, weset @ = 1 4 n/2. The Lagrangian



NUMERICAL SIMULATION OF PLASMAS 83

coefficients in this case do not yield even weight functions. Even weight functions
may, however, be obtained by symmetrization as follows,

%A‘_"(;};)(1+ﬁ+—§7) — (1) <v<—Fa,
o) — llAw)( )+A<n+n (1 “k+—ju“)]
(k — D do <v <k dy, (15)
(o) decesf)a

with k = 1 — n/2,..., n/2.

c. Examples

For n = 1 the averaging operation (7) conserves particles and momentum. Since
nis odd, Eq. (14) is applicable and we have

wP(®) = AL[1l — (v/dv)] = 1 — (v/dv)

for 0 < v < dv. In the interval —dv < v < 0, the function w(v) is defined by
symmetry and it is zero for | v | > dv. This function is illustrated at (a) in Fig. 3.
For n = 2 the averaging operation conserves particles, momentum and energy.
Since n is even, we apply Egs. (15),

w(v) = for 0<v<4dv

for dv < v < 24v.

This function is illustrated at (b) in Fig. 3, it extends over four meshes and has
negative side lobes. The fifth degree weight function w'®(v) is illustrated at (c) in
Fig. 3. This function extends over six meshes and has negative and positive side
lobes reminiscent of the weight function sin(zv/4v)/(mv/4v) used in the Fourier-
Fourier transform method [11, 18].

Most of the computations presented in Section 4 are based on the quadratic
weight function w®(v) for w,(x) and w,(v). However, some computations using
linear and fifth-degree weight functions are also presented.

The negative sidelobes in the quadratic and higher-order weight functions tend
to produce small ripples in the reconstructed distribution function. This effect is
similar to the Gibbs phenomenon in Fourier transforms and for small values of the
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Fic. 3. Examples of weight functions for averaging of the distribution in phase plane.
distribution function may give local negative values. The scale and amplitude of
these ripples remain negligible if the mesh sizes are kept small compared to the

local characteristic lengths and velocities of the plasma phenomena being con-
sidered.

d. Diffusion Rates

After the sample particles have been advanced N time steps, their velocities are
v; and the microscopic velocity distribution function is

o) = ¥ fi8(0 — v).

At this time the distribution function is reconstructed, using the weight function
w(v), and the coarse-grained distribution function is

f0) = ¥ fw(o — v)/dv.

To determine what features of the function f(v) are lost when it is replaced by f(v),
consider the Fourier transforms of both functions, called characteristic functions
of the distributions [14],

Ha) = | fw) e do = ¥ s, (16)
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and

B@) = | fe) e do = W@) 3 fret 1)

Here the function W(g) denotes the Fourier transform of the weight function
w(v)/dv. Plots of W(g) for linear and quadratic weight functions are shown in
Fig. 4.

Comparing Eqgs. (16) and (17) yields

H(q) = H(q) W(q). (18)

The reconstruction of the distribution function, therefore, appears as a smoothing
operation in phase space. Values of H corresponding to low values of g represent
large-scale features of the distribution function and should be left unchanged.
However, values of H corresponding to high values of ¢, which represent fine
structures of the distribution function are suppressed.

To estimate diffusion rates, consider the quantity

D(q) =1 — W(g).
After m reconstructions, the Fourier transform of the distribution function is

H(g, m) = H(g, m = O)[1 — D(g)I".
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FiG. 4. Fourier transforms of the weight functions w and w2,
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Assuming D(¢) < 1, which is valid for gdv/m <€ 1, this relation yields
H(g,m) = H(g, m = 0) e~mP(@, (19)

Thus the quantity D(q) represents the diffusion rate of a feature of scale 2/q.
Values of D(q) corresponding to linear and quadratic weight functions are given
in Table I. For example, a feature with characteristic velocity v, = 104w, for which
gdv/m = 0.2, has a diffusion rate D®(gdv/m = 0.2) = 2.5 X 10~3 corresponding
to the quadratic weight function. The distribution function can, therefore, be
reconstructed 400 times before this feature is reduced by an e-fold. In the case of
beaming instabilities, the velocity scale is of the order of 4v, i.e., gdv/m ~ 1. We
observe in Fig. 4 that D®(qdv/m = 1) = 0.4 and features at this scale are suppres-
sed after a few reconstructions of the distribution function.

TABLE I

Diffusion Rates for Linear and Quadratic Weight Functions

qdv|m 0 0.1 0.2 0.3 0.4
D 0 0.0082 0.0325 0.0719 0.1249
D@ 0 0.0002 0.0025 0.0120 0.0353

Note that the diffusion rates for gdv/m <€ 1 may be related to the moments of the
weight function w'*}(v) by expanding W™{(q) in Taylor series near ¢ = 0. We
have for n odd

- o qn+1 am+1W(n)
PR@ = =%y @ L,

(20)

n+1
= (_1)(n—1)/2 (nq+ ot <Un+1>(n),

where {v">* denotes the moment of order r of the weight function w'™(v). This
relation shows that weight functions which conserve a larger number of moments
yield less diffusion. For n even, the first non-zero moment is of order n - 2.

The estimate of the diffusion rates given in this section does not take into account
the discrete nature of the grid used to represent the phase plane in the present
method. A more complete analysis of the diffusion process, given in Appendix B,
shows that the above estimate gives the average diffusion rates assuming that the
sample particles, before reconstruction of the distribution function, are located at
random with uniform probability between grid points.
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4. EXAMPLES

Case 1: Two-Stream Instability with Equal Beams

m instahili ltine fi he initial it lefined

with

by the distribution function

flx,v,t = 0) = fy(v)[1 + 2e cos 2wx],

Silo) = (1o} /Zm) e,

and vy, = 0.3/, ¢ = 2.5 10-2 These initial conditions correspond to a system
length L = 10.5A, where A, = v,/w, is the Debye Length. The initially excited
mode has a wavelength equal to the length of the system, i.e., corresponds to the
first mode. The linear growth rates for this problem have been computed by Grant
and Feix [17]. The first mode is the only unstable mode and has a growth rate

y = 0.24.

The electrostatic energy for four solutions of this problem is shown in Fig. 5. All
four curves correspond to the same maximum velocity, vmax = 4.20;, , the same

mesh sizes, Ax =
threshold, i.e., the

1/32 and 4v = 2vmex/120 and the same time step 4¢ = 0.2. The
minimum value of the distribution function for which a sample

particle is considered, was set to zero.

—— QUADRATIC WEIGHT FUNCTIONS, N=10 l
i -~~~ QUADRATIC WEIGHT FUNCTIONS, N=|{ }

|

30104

201074

10 1074

I ——LINEAR WEIGHT FUNCTIONS, N=1

--------- QUADRATIC WEIGHT FUNCTIONS, N=o

Fic. 5. Electrostatic energy for two-stream instability with equal beams.

The solid curve corresponds to a reconstruction of the distribution function
every ten time steps, using quadratic weight functions. The broken line corresponds
to a reconstruction of the distribution function at every time step, also using
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quadratic weight functions. We observe in this case a decrease in the amplitude of
trapping oscillations. This is attributed to a diffusion of the distribution function
in phase plane due to repeated applications of the averaging operation defined by
Eq. (5). Note that although energy is conserved in the averaging operation, higher
moments are not conserved. This tends to flatten the distribution function resulting
in the escape of trapped particles. The curve drawn with dashes and dots in Fig. 5
corresponds again to a reconstruction of the distribution function at every time
step. This time, however, linear weight functions were used. The distribution
function flattens rapidly in this case, filling the hole located at the center of the
trapping region.

Because of the rather long tails in the distribution function in the present
problem, particles are lost over the boundaries at v = —vmax . For both solutions
with quadratic weight functions, the relative particle loss is 4 x 10-4, After
corrections for particles lost over the boundary, the relative energy error is
5.5 x 1073. For the solution with linear weight functions, the relative particle loss
is 2.7 x 103 and the relative energy error after correction for lost particles is
6.2 x 102

A Vlasov solution for this example has been carried out by Denavit and Kruer
[18] using the Fourier-Fourier transform method. The electrostatic energy for this
solution is in good agreement with the solid curve in Fig. 5. Particle simulations
have also been carried out by Armstrong and Nielson [12] and by Denavit and
Kruer [18]. The results of these simulations also agree with the result of the present
solution.

An additional computation was carried out in which the distribution function
was never reconstructed. The code then operated as a particle code with particles of
different masses initially arranged in a regular array in the phase plane. Phase plots
for this run showed beaming instabilities starting to appear at # = 10. The total
electrostatic energy for this case is represented by the dotted curve in Fig. 5. We
observe that spurious oscillations appear after ¢+ ~ 28.

Case 2: Two-Stream Instability with Unequal Beams

Consider now an instyability resulting from the interaction of a small beam with
a Maxwellian plasma. The initial conditions are
21
flx, v, t = 0) = fo(v) (1 + 2¢ Y ncos(2mnx + ¢>n)),
n=1

with
ﬁ)(v) = (1/\/-77_01,)(1’11,8'”2/%2 -+ nbe—(v—vd)z/vbz)’

and v, = V21072, v, == 2.6v, , v, = 0.25v, , n, = 0.95,n, = 0.05, e = 2.5 x 10~*
and initial phases ¢, chosen at random. Thus the small beam contains § 9 of the
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plasma and its mean velocity is 3.66 thermal velocities. These initial conditions
correspond to a system length of 1007, .

The total electrostatic energy for three solutions of this problem is shown in
Fig. 6. All three curves correspond to the same maximum velocity vmax = 40, ,
velocity interval dv = 20max/120 and time step 4 = 0.2 with the distribution
function reconstructed every 10 time steps. A threshold equal to 105 times the
maximum value of the distribution function was set. Below this threshold no
sample particles were considered.

Note that the present case involves five trapping regions (the fifth mode is the
most unstable mode) so that smaller values of 4x should be considered than in the
previous case. The solid line in Fig. 6 corresponds to 4x = 1/128 with quadratic
weight functions. The broken line corresponds to 4x = 1/64, again using quadratic
weight functions. The amplitude of trapping oscillations is reduced in this case. The
curve drawn with dashes and dots in Fig. 6 corresponds to 4x = 1/64 using fifth-
degree weight functions. We observe that the use of higher-order weight functions
tends to reduce the diffusion of the distribution function in phase space.

The relative particle loss with 4x = 1/128 and quadratic weight functions is
4 x 107% and the relative energy error is 3.5 x 10-% Comparable values of the
particle loss and energy error are found in the other two computations.

The density in phase near saturation is shown in Fig. 7. Numbers from 1 to 9
indicate relative densities. Blanks correspond to densities which are less than one-
tenth of the maximum density. Negative signs correspond to negative values of the
density larger in magnitude than one-tenth of the maximum density.

Particle simulations have been carried out for this example by Morse and
Nielson [3] and Denavit and Kruer [18]. The results of Morse and Nielson agree

|_5<0'*"T ————— ——— i T T e
\ QUADRATIC WEIGHT FUNCTIONS, AX=0.008
Y QUADRATIC WEIGHT FUNCTIONS, AX=0.0t6
: — —-— FIFTH DEGREE WEIGHT FUNCTIONS, AX=0.016
I
J

10 10—%

v
051076
1 1 1 | L
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Fic. 6. Electrostatic energy for two-stream instability with unequal beams.
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FiG. 7. Density in phase near saturation for two-stream instability with unequal beams.

only qualitatively with the present Vlasov solution. The differences, however,

may be attributed to the longer periodicity length considered by these authors
and the random nature of their initial conditions. The results obtained using
Kruer’s finite-size particle code with a quiet start [18] agree quantitatively with
the present solution out to ¢ ~ 70, after which the two solutions remain in qualita-

tive agreement.

The present method has been applied to several other one-dimensional problems
including an echo, a sideband instability and an investigation of trapping effects on

the propagation of wave packets.

The smoothing operation may be generalized to apply to nonuniform and time-
varying mesh sizes, which would allow a concentration of the computer capacity

in the most significant regions of phase space. These generalizations, and the

conservation of density in phase space discussed in Section 2, are important

considerations in the potential applications of hybrid solutions to multidimensional

problems.

5. BEAMING INSTABILITY

The time interval between reconstructions of the distribution function may be
estimated in terms of Dawson’s theory of plasma oscillations of electron beams [6].

= gdv

Consider a one-dimensional system of electron beams with velocities ¥V,
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and densities N, = N(V,) dv, with o = 0, 41, 4-2,..., moving over a neutralizing
positively charged background. Let n,(x, t) and v,(x, ) denote perturbations in
density and velocity for each beam. The linearized equations of motion and
continuity for each beam and Poisson’s equation yield

(avo/at) -+ Va(avo/ax) = _(eE/m)a
(n,[0t) + N,(0v,/0x) + V,(0nfox) = 0,

oE
ox

= —4me ) n,.

Assuming solutions of the form A(x, 1) = A(w, k) e"#«*=#» for the perturbation
quantities yields

ny(w, k) = (4re’/m)[N,/(w — kV,)], 2
vy(w, k) = (dme2/m)[1/k(w — kV,)], (22)
E(w, k) = —(4meifk), (23)

with the dispersion relation

de?

N,
- ;(w =L 4)

Dawson has shown that for 4v — 0, the left member of Eq. (24) may be written as
the sum of an integral and a singular term. For a Maxwellian beam density distri-
bution N(V,) = (n,/V2x vy) exp(V,2/2v%,), the dispersion relation becomes

A%V 2m) v/ dv) eFertriofndr — 1 4 k2.2 + [Z(D), (25)

where Z({) is the plasma dispersion function with { = w/v/2kvy, . The positive
sign is to be used in Eq. (25) for Im w > 0 and the negative sign for Im w < 0.
For each k, Eq. (25) has two complex conjugate roots corresponding to each

beam. Letting w, = o iB.and £ = odv/+/2v,, vields
Ckde, L LIm2Z() ~ |
% = —_—tan ( T k.2 - Re Z(Ca)) + ka 4o, (26)

and
B, = +(k dv)2m)(In(470y/v 27 dv) — {2

— (/) In{[1 + K2Ap* + {, Re Z({)P + [ Im Z(HFD).  @27)

Equations (21) and (22) are normal modes for a given k and satisfy the normal-

ization relation
1 / , {0 for w # o,
; '2—]va (w + w 2kVa) na(w, k) na(w > k) - H(w, k) fOI' w = wl. (28)
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For 4v — 0 and a Maxwellian beam distribution the function H(w, k) reduces to

H(w, , k) = F2mifk dv){1 + (/KA + LZ(L)]}- (29)

To verify that the instability occurring in the present method, when the distribution
function is not reconstructed, is indeed a beaming instability, a computation was
carried out for a Maxwellian beam distribution with »,, = 0.1 and 4o = 0.02. An
initial density perturbation was applied to the central beam,

(€N,_o COS kX for o =0,

10 for o # 0. (30)

n(x, t = 0) =

with € = 0.0025 and kA, = «/5. No initial velocity perturbation was applied. The
central beam velocity at x = #/2k from the code used in Section 4 is given by the
solid curve in Fig. 8. There is a gentle growth out to ¢+ = 46, followed by a sign
reversal at 7 = 48 and a very steep growth for ¢ > 48. The electric field for this
computation first drops rapidly to very low values, then suddenly reappears to
reach a maximum 23 times its initial value at z = 2n/kdv = 50.

10-3}- _
~
<Y
X
[}
b
T and =
NUMERICAL
O ANALYTICAL
(Av=002)
1075 L 1
) 20 40 60

t
Fic. 8. Velocity perturbation of central beam for beaming instability test.
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Expanding the velocity perturbation of the central beam into normal modes and
using the normalization relations (28), the initial conditions (30) yield

Vg wye v et

— _? - T 2 2 o1
Ao = Q)R oy KM SN KX Y e T e T

€29

[

The terms of the sum in Eq. (31) oscillate with the frequencies «, given by Eq. (26)
approximately equal to the Doppler frequencies kodv of the beams and grow
exponentially with growth rates S, given by Eq.(27). The damped terms correspond-
ing to the negative sign in Eq. (27) are ignored. The expression in brackets in the
denominator of Eq. (31) is the Landau denominator which in the present case has a
minimum near {, = 1.8. Thus, the dominant terms of the sum in Eq. (31) occur
for ¢ ~ 0, which corresponds to the minimum of w,? and

o =~ 3+(1.8) V20,/dv ~ 13

which corresponds to the minimum of the Landau denominator.

For t < 2w/kdv = 50, the terms corresponding to o =~ 13 phase mix and the
behavior of the velocity perturbation v,_, is given by the terms near ¢ = 0. The
growth rates for these terms is 8,_, = 0.08. The circles in Fig. 8 give values com-
puted by taking o = 0, +1, +2. These values are in good agreement with the
computer results represented by the solid curve.

The growth rate for the terms corresponding to ¢ ~ 413 is B, = 0.06. For
t =~ 2z/kdv = 50 these terms no longer phase mix. By this time they have grown
by a factor of approximately 20 and therefore give rise to a strong echo. This is
evident in the solid line in Fig. 8 for 7 > 48, and also agrees with the electric field
results which show a sudden regrowth with a maximum at ¢ = 50 which is 23 times
the initial electric field.

APPENDIX A: POSITION AND VELOCITY INCREMENTS

Let fi, = f(x;, vy , 1p) denote the value of the distribution function at the grid
point (x; , vy) at time #, and let 8x;,(t) denote the displacement of the sample particle
of mass f;; located at (x;, v;) at time #,. The position and velocity increments
dx;;, and vy, = 8%, will be computed as functions of time using a Lagrangian
formulation derived by R. Lewis [19]. This formulation yields an algorithm for
advancing sample particles which conserves energy independently of the mesh size
Adx.



94 DENAVIT

a. Lagrangian Formulation

The electrostatic potential i(x, ) is defined in terms of a base function ¢(x) and
a set of time-dependent coefficients «;(¢) by the linear combination

J-1

Plx, 1) = Y, aslt) d(x — xy). (A1)
=0
Here x; = jdx, for j = 0,..., J — 1, denote the grid-point locations and J is the
number of grid points in the x direction. The Lagrangian for a system of charged
particles is

b= Z‘:0 kzl 2f]k bt + ZO kzlfnc Z o (x; + Xy — X))
+ j % [ ' (x — xg)] i a;hx — x)b dx, (A2)

where K is the number of grid points in velocity and ¢'(x) = dé/dx. The first
term in Eq. (A2) is the kinetic energy, the second term is the negative of the inter-
action energy and the third term is the electrostatic energy of the system.
The equations of motion are obtained by taking variations with respect to the
particle displacements 8x;,, ,
J-1

Sy = ) a(t) ¢'(x; + Bxz — Xy), (A3)
i=0
and Poisson’s equation is obtained by taking variations with respect to the poten-
tial coefficients «; ,

2 o f g x) $lx — x) d

= j Bx—x)ds— T3 fudlxi + 5% — x) (A4)

i=0 k=1
b. Base Function

The specific algorithm to be used now depends on the form of the base function
#(x), which determines the charge sharing scheme to be used in advancing particles.
In the present algorithm, particles having a triangular charge distribution with
half-width dx are used. The corresponding base function is

(1/DI(B/2) + (x/Ax)2  for —(34x/2) < x < —(dx/2),
d(x) = {(3/4) — (x/dx)? for —(dx/2) < x < -+(dx/2),
1/D[(B/2) — (x/dx)P  for (Ax/2) < x < (34x/2).
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Let x; denote the grid point location closest to the sample particle (jk) and set
p = (x; + 8x;; — x;)/dx; then |p| < . When the above base function is
substituted into the right member of Eq. (A3) the sum reduces to three terms and
we have

8k = (1/AX)[—ay (3 — P) — 2040 + oy a(} + D] (A5)
Substituting the base function into Eq. (A4) yields
(1/64x)(—oj_y — 2054 + 60y — 205 — oy9) = dx — B, (A6)

where
J-1 K

B =Y, ) fudlx; + 8xy — X)) (A7)

=0 k=1

is the charge assigned to grid point j. Note that the left member of Eq. (A6) is a
finite-difference representation of the second derivative of the potential.

Since periodic boundary conditions are assumed, it is convenient to solve
Poisson’s equation by discrete Fourier-transforms [15, 16]. Let

J~-1
&y = z oc]-e(z’””)"’
j=0

and
5 o it
B — B'e T ni
n EO s

denote the transforms of the arrays «, and 5; . Multiplying Eq. (A6) by exp(2winj/J),
summing over j and solving for &, yields

. —Ba
%n = AT sin*(an/ D)1 — % sin¥(mnfD)]

The array «; is then obtained by taking the inverse transform of a,, .

The time integration for the quantities 8x;;, and «; is carried out by a conventional
leap-frog scheme. Since the distribution function requires simultaneous knowledge
of the particle positions and velocities, a half-time step is taken just before and
after each reconstruction of the distribution function.

The computing time to advance the sample particle was found to be
approximately 0.5 msec per particle, per time step, on the CDC 3800. The com-
puting time to reconstruct the distribution function with quadratic weight functions
was approximately 0.7 msec per particle.
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c. Energy Conservation

As a consequence of the Lagrangian formulation, the present algorithm for
advancing the sample particles conserves momentum and energy independently of
the mesh size dx. The expression for the total energy is provided by the
Hamiltonian

Ho3 % Y fedshty 3 om [ $lo— 0l ndn (49

110

The first term in the right member of Eq. (A9) represents the kinetic energy of the
system and the second term represents the electrostatic energy U. The latter term
may be conveniently evaluated using the Fourier transformed array &, ,

Uty =2 Z &pd_y, SIN?

=0

7}” (1 _2 sin? w_n)

3 ; (A10)

APPENDIX B: DIFFUSION RATES ON A DISCRETE GRID

After reconstruction, the distribution function is not defined on a continuum as
assumed in Section 3d, but only at discrete grid points k4v and we have

f(v) = Zf} Y w(v — v;) 8(v — k dv).

Taking the Fourier transform with respect to velocity yields

Hg) = Zf;- Y wk dv — v;) eikedr,

Let j’Av denote the grid point closest to the left of v; and p; = v;/dv — j'. We have

H(q) = 5. Welg, p;) fie'™, (B1)
j
with
0 ’
Welg, p) = Y wlk — p;) dv] e* 9o, (B2)
k'=1-0Q

Comparing Eq. (B1) with Eq. (17) we observe that the function Wg(q, p;) plays
the role of the smoothing function W{(q) introduced in Section 3d. However,
since We(q, p;) depends on p;, i.e., on the location of particle j relative to the
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nearest grid points, it cannot be factored out of the sum as done in Eq. (17). It
appears that each particle is diffused at a different rate depending on its location
relative to the nearest grid points. Particles located midway between two grid points
(p; = 1/2) are diffused most, while for particles approaching a grid point ( p; -0
or p; — 1) the diffusion goes to zero.

If we assume that the particles are located at random between grid points with
uniform probability, the diffusion rate Dg(q, p) = 1 — We(q, p) may be averaged
to give

Dglg)y =1 — f: Waq, p) dp
(B3)

Q 1 (0’
=1 — Z f W[(kl _ P) AU] e‘t(k —p)adv dp-
0

k'=1—-Q

Setting v = (k' — p) dv, the sum in the last equation reduces to

40 d
Wig) = f w(v) e?® Zl;—

This expression is identical to the Fourier transform of the weight function con-
sidered in Section 3d. For linear and quadratic weight functions, we have. respec-
tively,

W®(g) = [1/(gdv/2)*] sin*(qdv/2), (B4)

and
W9(qg) = [1/(g dv/2)?] sin¥(q 4v/2) [1 + (sin (g Av)/q Av) — cos¥(q Av/2)]. (B5)

These expressions yield the curves shown in Fig. 4 and the diffusion rates given in
Table 1.

If we assume that the particles remain close to the grid points, a different estimate
of the diffusion rates may be obtained by expanding Wy(q, p) for small p. For
small values of ¢ we may also expand as in Egs. (20) and for quadratic weight
functions this gives

~_ 9P (OWs |, 00 (qdvy
D4, p) ~ — 74y ( 3q" op )M 2% ( - ) '
p=0
This estimate of the diffusion rates is applicable in the x direction to small values
of the velocity for which | 8x | < 4x. In the velocity direction it is applicable to
regions of weak electric field for which | 8v | < 4v.

581/9/1-7
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